Optimoinnin käytännön soveltamisessa tulee vastaan monia näkökulmia, joita akateemisella puolella ei välttämättä tule niin syvällisesti pohdittua. Tämä teksti on pieni sukellus monisyiseen aiheeseen, josta minulla on ollut ilo oppia paljon viimeisimmän kahden vuoden aikana optimointiin keskittyvän Weoptit Oy:n palveluksessa. Tekstissä tuon esiin tilannetta kentällä, käytännön haasteita, sekä nostan esiin tyypillisiä hyötyjä, joita optimoinnilla käytännössä voidaan hakea.
Operatiivisen toiminnan suunnittelu on eräs alamme perinteisistä kiinnostuksen kohteista. Yleisiä suunnitteluongelmia ovat esimerkiksi työntekijöiden työvuorolistojen suunnittelu, kuljetusajoneuvojen reitit, julkisen liikenteen aikataulut sekä tuotantolinjojen käyttö. Yhteistä näille ongelmille on suuri määrä päätösmuuttujia, rajoitusehtoja ja monitavoitteisuus.
Esimerkiksi 50 hengen työvuorolistan suunnittelu kolmen viikon jaksolle tarkoittaa yhteensä noin 750 työvuoron määrittämistä. Työvuorojen valinnassa tulee noudattaa esimerkiksi 30 eri sääntöä ja tasapainotella kymmenen eri tavoitteen välillä. Tavoitteita voivat olla vaikkapa palkkakustannusten minimointi ja työhyvinvoinnin maksimointi. Työhyvinvoinnin kannalta vuorolistaa voidaan arvioida esimerkiksi laskemalla, kuinka monta kertaa työntekijällä on perättäisinä päivinä aamuvuoro ja iltavuoro. Vuorotyypin vaihdos perättäisinä päivinä on tyypillisesti kuormittavaa. Vuorolistaa ei voi laatia ”myooppisesti” yksi valinta kerrallaan vaan se on rakennettava kokonaisuus huomioiden. Jos yhden henkilön vuorolistaa muutetaan, niin koko paketti voi mennä uusiksi.
Käytännössä matemaattisen optimoinnin hyödyntäminen on monilla aloilla ennemmin poikkeus kuin sääntö. Suunnittelijan apuna on tyypillisesti taulukkolaskentaohjelma tai suunnittelun avuksi laadittu ohjelmisto, joka pitää kirjaa, tarkistaa ihmisen laatiman suunnitelman ja pisteyttää sen. Ratkaiseva ero optimointia hyödyntävässä ohjelmistossa on sen kyky suosittaa käypää ja tavoitteiden kannalta hyvää ratkaisua. Optimoinnin vähäisen käytön taustalla on varmasti useita syitä, kuten laskentatehon vajavaisuus, puutteellinen data tai osaamisvaje.
Tilanne on kuitenkin muuttumassa vauhdilla. Oma tuntumani on, että kentällä kiinnostus optimointia kohtaan on hyvin suurta. Laskentateho on yhä harvemmin ongelmana. Yritykset ja muut organisaatiot ovat ottaneet harppauksia tiedonhallinnassa. Suunnitteluun vaadittavat tiedot ovat yhä harvemmin ainoastaan fyysisellä paperilla tai suunnittelijan päässä. Osaamisvaje kuroutuu umpeen esimerkiksi, kun yliopistokursseilla käytetään yhä useammin kaupallisia ratkaisimia, kuten Gurobi ja CPLEX, joilla kyetään ratkomaan realistisen kokoisia ongelmia näppärästi. Kentällä on yhä enemmän henkilöitä, joilla on kokemusta tuotantoon asti vietyjen ratkaisujen tuottamisesta.
Optimoinnin käyttöönottoon liittyy tietysti myös kaupallinen puolensa. Optimoinnin kehittäminen, käyttöönotto ja ylläpito on investointi, jonka tulee olla kannattava. Tällöin on tärkeää kyetä perustelemaan ja arvioimaan optimoinnin hyödyt. Ne voivat koostua esimerkiksi seuraavista tekijöistä:
Tuotoksen kohentuminen. Tuotos voi kohentua laadullisesti ja määrällisesti, kun resurssit ovat paremmin kohdennettu kannattavimpaan toimintaan. Käytännössä esimerkiksi asiakaspalvelija kohentaa asiakaspalvelun tasoa, mikäli hän on työpaikalla samaan aikaan kuin asiakaskin.
Säästöt operatiivisessa toiminnassa. Kustannukset vähentyvät, jos suunnittelulla kyetään vähentämään turhaa päällekkäisyyttä, tyhjäkäyntiä tai muuta hukkaa. Esimerkiksi lentoliikenteen työvuorosuunnittelussa voidaan pyrkiä vähentämään tilanteita, joissa kapteeni on omalle lennolleen siirtyäkseen kyydissä toisessa lentokoneessa.
Työhyvinvoinnin ja työn mielekkyyden parantaminen. Näitä voidaan optimoinnin avulla parantaa esimerkiksi paremmalla ergonomiatekijöiden ja työntekijöiden toiveiden huomioinnilla. Uudelleen järjestelemällä työvuoroja on mahdollista löytää kustannusten kannalta yhtä hyviä ratkaisuja, jotka ovat kuitenkin parempia työhyvinvoinnin kannalta. Toiveet hankaloittavat hyvän ratkaisun löytämistä, mutta optimoinnille tämä ei välttämättä ole ongelma.
Suunnitteluun kuluvan ajan vähentäminen. Suunnitteluun kuluva aika voi optimointia hyödynnettäessä olla murto-osa aiemmasta. Tämä vapauttaa suunnittelijoiden aikaa muihin tehtäviin tai mahdollistaa suunnittelijoiden määrän vähentämisen.
Suunnitelmien päivittäminen. Poikkeamatilanteiden ja yllätysten sattuessa optimointi voi mahdollistaa suunnitelman nopean uudelleenlaskennan. Tällaisia voivat olla esimerkiksi työntekijän sairastuminen, tai työn kysynnän äkillinen kasvaminen.
Ajantasaisimman tiedon käyttäminen. Suunnittelun nopeutuessa suunnittelun ajankohta voidaan siirtää lähemmäksi suunnitelmien julkaisupäivää. Tällöin voidaan hyödyntää ajantasaisempia ennusteita työntekijöiden käytettävyydestä ka työ ntarpeesta.
Skenaario- ja ”mitä jos”-analyysi. Vaihtoehtoisia suunnitelmia voidaan laatia erilaisilla painotuksilla tai oletuksilla. Näin voidaan tehdä suunnittelun trade-offeja läpinäkyväksi. Optimointi voi tehdä strategisen tason päätöksistä kuten jakelun aluejakojen määrittämisestä tai hankinnoista paremmin perusteltuja. Esimerkiksi voidaan kysyä ”kun kysyntä kasvaa, niin kumpi estää kysyntään vastaamista aikaisemmin tuotantolinjojen vai välivaraston kapasiteetti?”. Tämä on arvokas tieto kehitysinvestointeihin.
Käytännössä optimointitehtävän ratkaistavuus ja tulosten laatu validoidaan usein ns. ”proof of concept” projektissa, jossa optimointimalli kehitetään ja sillä ajetaan tuloksia muutamalla datasetillä. Tämän jälkeen haasteena on optimoinnin integrointi operatiivisen toiminnan ohjauksen järjestelmiin, tai kokonaan uuden järjestelmän rakentaminen. Tämä onkin täysin oma aiheensa, jossa on huomioitava esimerkiksi käyttäjien lukumäärä sekä heidän tietonsa ja taitonsa, mutta siitä lisää toisessa kirjoituksessa…
Hyvää kesää kaikille FORS blogin lukijoille 🙂